Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Int J Med Inform ; 187: 105461, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643701

RESUMO

OBJECTIVE: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (for example, endometriosis, ovarian cyst, and uterine fibroids). MATERIALS AND METHODS: We harmonized survey data from the Personalized Environment and Genes Study (PEGS) on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison. RESULTS: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant or suggestive predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures. DISCUSSION: Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal but can support hypothesis generation. CONCLUSION: This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.

2.
Open Forum Infect Dis ; 11(2): ofae019, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38379569

RESUMO

Background: Real-world evidence of coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) booster effectiveness among patients with immune dysfunction are limited. Methods: We included data from patients in the United States National COVID Cohort Collaborative (N3C) who completed ≥2 doses of mRNA vaccination between 10 December 2020 and 27 May 2022. Immune dysfunction conditions included human immunodeficiency virus infection, solid organ or bone marrow transplant, autoimmune diseases, and cancer. We defined incident COVID-19 BTI as positive results from laboratory tests or diagnostic codes 14 days after at least 2 doses of mRNA vaccination; and severe COVID-19 BTI as hospitalization, invasive cardiopulmonary support, and/or death. We used propensity scores to match boosted versus nonboosted patients and evaluated hazards of incident and severe COVID-19 BTI using Cox regression after matching. Results: Among patients without immune dysfunction, the relative effectiveness of booster (3 doses) after 6 months from the primary (2 doses) vaccination against BTI ranged from 69% to 81% during the Delta-predominant period and from 33% to 39% during the Omicron-predominant period. Relative effectiveness against BTI was lower among patients with immune dysfunction but remained statistically significant in both periods. Boosted patients had lower risk of COVID-19-related hospitalization (hazard ratios [HR] ranged from 0.5 [95% confidence interval {CI}, .48-.53] to 0.63 [95% CI, .56-.70]), invasive cardiopulmonary support, or death (HRs ranged from 0.46 [95% CI, .41-.52] to 0.63 [95% CI, .50-.79]) during both periods. Conclusions: Booster vaccines remain effective against severe COVID-19 BTI throughout the Delta- and Omicron-predominant periods, regardless of patients' immune status.

3.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38383067

RESUMO

MOTIVATION: Creating knowledge bases and ontologies is a time consuming task that relies on manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrarily complex nested knowledge schemas. RESULTS: Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against an LLM to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for matched elements. We present examples of applying SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease relationships. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction methods, but greatly surpasses an LLM's native capability of grounding entities with unique identifiers. SPIRES has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any new training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. AVAILABILITY AND IMPLEMENTATION: SPIRES is available as part of the open source OntoGPT package: https://github.com/monarch-initiative/ontogpt.


Assuntos
Bases de Conhecimento , Semântica , Bases de Dados Factuais
4.
BMC Med Inform Decis Mak ; 24(1): 30, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297371

RESUMO

OBJECTIVE: Clinical deep phenotyping and phenotype annotation play a critical role in both the diagnosis of patients with rare disorders as well as in building computationally-tractable knowledge in the rare disorders field. These processes rely on using ontology concepts, often from the Human Phenotype Ontology, in conjunction with a phenotype concept recognition task (supported usually by machine learning methods) to curate patient profiles or existing scientific literature. With the significant shift in the use of large language models (LLMs) for most NLP tasks, we examine the performance of the latest Generative Pre-trained Transformer (GPT) models underpinning ChatGPT as a foundation for the tasks of clinical phenotyping and phenotype annotation. MATERIALS AND METHODS: The experimental setup of the study included seven prompts of various levels of specificity, two GPT models (gpt-3.5-turbo and gpt-4.0) and two established gold standard corpora for phenotype recognition, one consisting of publication abstracts and the other clinical observations. RESULTS: The best run, using in-context learning, achieved 0.58 document-level F1 score on publication abstracts and 0.75 document-level F1 score on clinical observations, as well as a mention-level F1 score of 0.7, which surpasses the current best in class tool. Without in-context learning, however, performance is significantly below the existing approaches. CONCLUSION: Our experiments show that gpt-4.0 surpasses the state of the art performance if the task is constrained to a subset of the target ontology where there is prior knowledge of the terms that are expected to be matched. While the results are promising, the non-deterministic nature of the outcomes, the high cost and the lack of concordance between different runs using the same prompt and input make the use of these LLMs challenging for this particular task.


Assuntos
Conhecimento , Idioma , Humanos , Aprendizado de Máquina , Fenótipo , Doenças Raras
5.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000386

RESUMO

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Assuntos
Bases de Dados Factuais , Doença , Genes , Fenótipo , Humanos , Internet , Bases de Dados Factuais/normas , Software , Genes/genética , Doença/genética
6.
Med ; 4(12): 913-927.e3, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37963467

RESUMO

BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.


Assuntos
Ontologias Biológicas , Humanos , Doenças Raras , Software , Simulação por Computador
7.
medRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873471

RESUMO

Postpartum depression (PPD), afflicting one in seven women, poses a major challenge in maternal health. Existing approaches to detect PPD heavily depend on in-person postpartum visits, leading to cases of the condition being overlooked and untreated. We explored the potential of consumer wearable-derived digital biomarkers for PPD recognition to address this gap. Our study demonstrated that intra-individual machine learning (ML) models developed using these digital biomarkers can discern between pre-pregnancy, pregnancy, postpartum without depression, and postpartum with depression time periods (i.e., PPD diagnosis). When evaluating variable importance, calories burned from the basal metabolic rate (calories BMR) emerged as the digital biomarker most predictive of PPD. To confirm the specificity of our method, we demonstrated that models developed in women without PPD could not accurately classify the PPD-equivalent phase. Prior depression history did not alter model efficacy for PPD recognition. Furthermore, the individualized models demonstrated superior performance compared to a conventional cohort-based model for the detection of PPD, underscoring the effectiveness of our individualized ML approach. This work establishes consumer wearables as a promising avenue for PPD identification. More importantly, it also emphasizes the utility of individualized ML model methodology, potentially transforming early disease detection strategies.

8.
BMC Public Health ; 23(1): 2103, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880596

RESUMO

BACKGROUND: More than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection (PASC, which includes long-COVID). The objective is to identify risk factors associated with PASC/long-COVID diagnosis. METHODS: This was a retrospective case-control study including 31 health systems in the United States from the National COVID Cohort Collaborative (N3C). 8,325 individuals with PASC (defined by the presence of the International Classification of Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 controls within the same health system and COVID index date within ± 45 days of the corresponding case's earliest COVID index date. Measurements of risk factors included demographics, comorbidities, treatment and acute characteristics related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine the associations between risk factors and PASC. RESULTS: Among 8,325 individuals with PASC, the majority were > 50 years of age (56.6%), female (62.8%), and non-Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; OR ranging from 2.32 to 2.58), female sex (OR 1.4, 95% CI 1.33-1.48), hospitalization associated with COVID-19 (OR 3.8, 95% CI 3.05-4.73), long (8-30 days, OR 1.69, 95% CI 1.31-2.17) or extended hospital stay (30 + days, OR 3.38, 95% CI 2.45-4.67), receipt of mechanical ventilation (OR 1.44, 95% CI 1.18-1.74), and several comorbidities including depression (OR 1.50, 95% CI 1.40-1.60), chronic lung disease (OR 1.63, 95% CI 1.53-1.74), and obesity (OR 1.23, 95% CI 1.16-1.3) were associated with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated with a lower likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), male sex, non-Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, psychosis, and dementia. More doctors per capita in the county of residence was associated with an increased likelihood of PASC diagnosis or care at a long-COVID clinic. Our findings were consistent in sensitivity analyses using a variety of analytic techniques and approaches to select controls. CONCLUSIONS: This national study identified important risk factors for PASC diagnosis such as middle age, severe COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering PASC course.


Assuntos
COVID-19 , SARS-CoV-2 , Pessoa de Meia-Idade , Feminino , Masculino , Humanos , Adulto , Idoso , Adolescente , Adulto Jovem , COVID-19/epidemiologia , Síndrome Pós-COVID-19 Aguda , Estudos de Casos e Controles , Estudos Retrospectivos , Fatores de Risco , Progressão da Doença
9.
Injury ; 54(12): 111092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871347

RESUMO

BACKGROUND: The objective of this study was to investigate the outcomes of COVID-19-positive patients undergoing orthopaedic fracture surgery using data from a national database of U.S. adults with a COVID-19 test for SARS-CoV-2. METHODS: This is a retrospective cohort study using data from a national database to compare orthopaedic fracture surgery outcomes between COVID-19-positive and COVID-19-negative patients in the United States. Participants aged 18-99 with orthopaedic fracture surgery between March and December 2020 were included. The main exposure was COVID-19 status. Outcomes included perioperative complications, 30-day all-cause mortality, and overall all-cause mortality. Multivariable adjusted models were fitted to determine the association of COVID-positivity with all-cause mortality. RESULTS: The total population of 6.5 million patient records was queried, identifying 76,697 participants with a fracture. There were 7,628 participants in the National COVID Cohort who had a fracture and operative management. The Charlson Comorbidity Index was higher in the COVID-19-positive group (n = 476, 6.2 %) than the COVID-19-negative group (n = 7,152, 93.8 %) (2.2 vs 1.4, p<0.001). The COVID-19-positive group had higher mortality (13.2 % vs 5.2 %, p<0.001) than the COVID-19-negative group with higher odds of death in the fully adjusted model (Odds Ratio=1.59; 95 % Confidence Interval: 1.16-2.18). CONCLUSION: COVID-19-positive participants with a fracture requiring surgery had higher mortality and perioperative complications than COVID-19-negative patients in this national cohort of U.S. adults tested for COVID-19. The risks associated with COVID-19 can guide potential treatment options and counseling of patients and their families. Future studies can be conducted as data accumulates. LEVEL OF EVIDENCE: Level III.


Assuntos
COVID-19 , Fraturas do Quadril , Ortopedia , Adulto , Humanos , Estados Unidos/epidemiologia , COVID-19/complicações , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Fraturas do Quadril/cirurgia
10.
JAMIA Open ; 6(3): ooad067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37600074

RESUMO

Objectives: To define pregnancy episodes and estimate gestational age within electronic health record (EHR) data from the National COVID Cohort Collaborative (N3C). Materials and Methods: We developed a comprehensive approach, named Hierarchy and rule-based pregnancy episode Inference integrated with Pregnancy Progression Signatures (HIPPS), and applied it to EHR data in the N3C (January 1, 2018-April 7, 2022). HIPPS combines: (1) an extension of a previously published pregnancy episode algorithm, (2) a novel algorithm to detect gestational age-specific signatures of a progressing pregnancy for further episode support, and (3) pregnancy start date inference. Clinicians performed validation of HIPPS on a subset of episodes. We then generated pregnancy cohorts based on gestational age precision and pregnancy outcomes for assessment of accuracy and comparison of COVID-19 and other characteristics. Results: We identified 628 165 pregnant persons with 816 471 pregnancy episodes, of which 52.3% were live births, 24.4% were other outcomes (stillbirth, ectopic pregnancy, abortions), and 23.3% had unknown outcomes. Clinician validation agreed 98.8% with HIPPS-identified episodes. We were able to estimate start dates within 1 week of precision for 475 433 (58.2%) episodes. 62 540 (7.7%) episodes had incident COVID-19 during pregnancy. Discussion: HIPPS provides measures of support for pregnancy-related variables such as gestational age and pregnancy outcomes based on N3C data. Gestational age precision allows researchers to find time to events with reasonable confidence. Conclusion: We have developed a novel and robust approach for inferring pregnancy episodes and gestational age that addresses data inconsistency and missingness in EHR data.

11.
J Am Med Inform Assoc ; 30(12): 2036-2040, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37555837

RESUMO

Despite recent methodology advancements in clinical natural language processing (NLP), the adoption of clinical NLP models within the translational research community remains hindered by process heterogeneity and human factor variations. Concurrently, these factors also dramatically increase the difficulty in developing NLP models in multi-site settings, which is necessary for algorithm robustness and generalizability. Here, we reported on our experience developing an NLP solution for Coronavirus Disease 2019 (COVID-19) signs and symptom extraction in an open NLP framework from a subset of sites participating in the National COVID Cohort (N3C). We then empirically highlight the benefits of multi-site data for both symbolic and statistical methods, as well as highlight the need for federated annotation and evaluation to resolve several pitfalls encountered in the course of these efforts.


Assuntos
COVID-19 , Processamento de Linguagem Natural , Humanos , Registros Eletrônicos de Saúde , Algoritmos
12.
medRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37502882

RESUMO

Objective: Female reproductive disorders (FRDs) are common health conditions that may present with significant symptoms. Diet and environment are potential areas for FRD interventions. We utilized a knowledge graph (KG) method to predict factors associated with common FRDs (e.g., endometriosis, ovarian cyst, and uterine fibroids). Materials and Methods: We harmonized survey data from the Personalized Environment and Genes Study on internal and external environmental exposures and health conditions with biomedical ontology content. We merged the harmonized data and ontologies with supplemental nutrient and agricultural chemical data to create a KG. We analyzed the KG by embedding edges and applying a random forest for edge prediction to identify variables potentially associated with FRDs. We also conducted logistic regression analysis for comparison. Results: Across 9765 PEGS respondents, the KG analysis resulted in 8535 significant predicted links between FRDs and chemicals, phenotypes, and diseases. Amongst these links, 32 were exact matches when compared with the logistic regression results, including comorbidities, medications, foods, and occupational exposures. Discussion: Mechanistic underpinnings of predicted links documented in the literature may support some of our findings. Our KG methods are useful for predicting possible associations in large, survey-based datasets with added information on directionality and magnitude of effect from logistic regression. These results should not be construed as causal, but can support hypothesis generation. Conclusion: This investigation enabled the generation of hypotheses on a variety of potential links between FRDs and exposures. Future investigations should prospectively evaluate the variables hypothesized to impact FRDs.

13.
medRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503136

RESUMO

Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).

14.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389415

RESUMO

MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org.


Assuntos
Ontologias Biológicas , COVID-19 , Humanos , Reconhecimento Automatizado de Padrão , Doenças Raras , Aprendizado de Máquina
15.
NPJ Digit Med ; 6(1): 89, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208468

RESUMO

Common data models solve many challenges of standardizing electronic health record (EHR) data but are unable to semantically integrate all of the resources needed for deep phenotyping. Open Biological and Biomedical Ontology (OBO) Foundry ontologies provide computable representations of biological knowledge and enable the integration of heterogeneous data. However, mapping EHR data to OBO ontologies requires significant manual curation and domain expertise. We introduce OMOP2OBO, an algorithm for mapping Observational Medical Outcomes Partnership (OMOP) vocabularies to OBO ontologies. Using OMOP2OBO, we produced mappings for 92,367 conditions, 8611 drug ingredients, and 10,673 measurement results, which covered 68-99% of concepts used in clinical practice when examined across 24 hospitals. When used to phenotype rare disease patients, the mappings helped systematically identify undiagnosed patients who might benefit from genetic testing. By aligning OMOP vocabularies to OBO ontologies our algorithm presents new opportunities to advance EHR-based deep phenotyping.

16.
PLoS One ; 18(5): e0285433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37196000

RESUMO

The Global Alliance for Genomics and Health (GA4GH) is a standards-setting organization that is developing a suite of coordinated standards for genomics. The GA4GH Phenopacket Schema is a standard for sharing disease and phenotype information that characterizes an individual person or biosample. The Phenopacket Schema is flexible and can represent clinical data for any kind of human disease including rare disease, complex disease, and cancer. It also allows consortia or databases to apply additional constraints to ensure uniform data collection for specific goals. We present phenopacket-tools, an open-source Java library and command-line application for construction, conversion, and validation of phenopackets. Phenopacket-tools simplifies construction of phenopackets by providing concise builders, programmatic shortcuts, and predefined building blocks (ontology classes) for concepts such as anatomical organs, age of onset, biospecimen type, and clinical modifiers. Phenopacket-tools can be used to validate the syntax and semantics of phenopackets as well as to assess adherence to additional user-defined requirements. The documentation includes examples showing how to use the Java library and the command-line tool to create and validate phenopackets. We demonstrate how to create, convert, and validate phenopackets using the library or the command-line application. Source code, API documentation, comprehensive user guide and a tutorial can be found at https://github.com/phenopackets/phenopacket-tools. The library can be installed from the public Maven Central artifact repository and the application is available as a standalone archive. The phenopacket-tools library helps developers implement and standardize the collection and exchange of phenotypic and other clinical data for use in phenotype-driven genomic diagnostics, translational research, and precision medicine applications.


Assuntos
Neoplasias , Software , Humanos , Genômica , Bases de Dados Factuais , Biblioteca Gênica
17.
Nat Commun ; 14(1): 2914, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217471

RESUMO

Long COVID, or complications arising from COVID-19 weeks after infection, has become a central concern for public health experts. The United States National Institutes of Health founded the RECOVER initiative to better understand long COVID. We used electronic health records available through the National COVID Cohort Collaborative to characterize the association between SARS-CoV-2 vaccination and long COVID diagnosis. Among patients with a COVID-19 infection between August 1, 2021 and January 31, 2022, we defined two cohorts using distinct definitions of long COVID-a clinical diagnosis (n = 47,404) or a previously described computational phenotype (n = 198,514)-to compare unvaccinated individuals to those with a complete vaccine series prior to infection. Evidence of long COVID was monitored through June or July of 2022, depending on patients' data availability. We found that vaccination was consistently associated with lower odds and rates of long COVID clinical diagnosis and high-confidence computationally derived diagnosis after adjusting for sex, demographics, and medical history.


Assuntos
COVID-19 , Síndrome Pós-COVID-19 Aguda , Estados Unidos/epidemiologia , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Coortes , SARS-CoV-2 , Vacinação
18.
Adv Genet (Hoboken) ; 4(1): 2200016, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36910590

RESUMO

The Global Alliance for Genomics and Health (GA4GH) is developing a suite of coordinated standards for genomics for healthcare. The Phenopacket is a new GA4GH standard for sharing disease and phenotype information that characterizes an individual person, linking that individual to detailed phenotypic descriptions, genetic information, diagnoses, and treatments. A detailed example is presented that illustrates how to use the schema to represent the clinical course of a patient with retinoblastoma, including demographic information, the clinical diagnosis, phenotypic features and clinical measurements, an examination of the extirpated tumor, therapies, and the results of genomic analysis. The Phenopacket Schema, together with other GA4GH data and technical standards, will enable data exchange and provide a foundation for the computational analysis of disease and phenotype information to improve our ability to diagnose and conduct research on all types of disorders, including cancer and rare diseases.

19.
J Biomed Semantics ; 14(1): 3, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36823605

RESUMO

BACKGROUND: Evaluating the impact of environmental exposures on organism health is a key goal of modern biomedicine and is critically important in an age of greater pollution and chemicals in our environment. Environmental health utilizes many different research methods and generates a variety of data types. However, to date, no comprehensive database represents the full spectrum of environmental health data. Due to a lack of interoperability between databases, tools for integrating these resources are needed. In this manuscript we present the Environmental Conditions, Treatments, and Exposures Ontology (ECTO), a species-agnostic ontology focused on exposure events that occur as a result of natural and experimental processes, such as diet, work, or research activities. ECTO is intended for use in harmonizing environmental health data resources to support cross-study integration and inference for mechanism discovery. METHODS AND FINDINGS: ECTO is an ontology designed for describing organismal exposures such as toxicological research, environmental variables, dietary features, and patient-reported data from surveys. ECTO utilizes the base model established within the Exposure Ontology (ExO). ECTO is developed using a combination of manual curation and Dead Simple OWL Design Patterns (DOSDP), and contains over 2700 environmental exposure terms, and incorporates chemical and environmental ontologies. ECTO is an Open Biological and Biomedical Ontology (OBO) Foundry ontology that is designed for interoperability, reuse, and axiomatization with other ontologies. ECTO terms have been utilized in axioms within the Mondo Disease Ontology to represent diseases caused or influenced by environmental factors, as well as for survey encoding for the Personalized Environment and Genes Study (PEGS). CONCLUSIONS: We constructed ECTO to meet Open Biological and Biomedical Ontology (OBO) Foundry principles to increase translation opportunities between environmental health and other areas of biology. ECTO has a growing community of contributors consisting of toxicologists, public health epidemiologists, and health care providers to provide the necessary expertise for areas that have been identified previously as gaps.


Assuntos
Ontologias Biológicas , Humanos , Bases de Dados Factuais
20.
EBioMedicine ; 87: 104413, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563487

RESUMO

BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: NIH (TR002306/OT2HL161847-01/OD011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.


Assuntos
COVID-19 , Síndrome Pós-COVID-19 Aguda , Humanos , Progressão da Doença , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...